\(\int \frac {(a+b x)^{3/2}}{x^3 \sqrt {c+d x}} \, dx\) [631]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 119 \[ \int \frac {(a+b x)^{3/2}}{x^3 \sqrt {c+d x}} \, dx=-\frac {3 (b c-a d) \sqrt {a+b x} \sqrt {c+d x}}{4 c^2 x}-\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 c x^2}-\frac {3 (b c-a d)^2 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{4 \sqrt {a} c^{5/2}} \]

[Out]

-3/4*(-a*d+b*c)^2*arctanh(c^(1/2)*(b*x+a)^(1/2)/a^(1/2)/(d*x+c)^(1/2))/c^(5/2)/a^(1/2)-1/2*(b*x+a)^(3/2)*(d*x+
c)^(1/2)/c/x^2-3/4*(-a*d+b*c)*(b*x+a)^(1/2)*(d*x+c)^(1/2)/c^2/x

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {96, 95, 214} \[ \int \frac {(a+b x)^{3/2}}{x^3 \sqrt {c+d x}} \, dx=-\frac {3 (b c-a d)^2 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{4 \sqrt {a} c^{5/2}}-\frac {3 \sqrt {a+b x} \sqrt {c+d x} (b c-a d)}{4 c^2 x}-\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 c x^2} \]

[In]

Int[(a + b*x)^(3/2)/(x^3*Sqrt[c + d*x]),x]

[Out]

(-3*(b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*c^2*x) - ((a + b*x)^(3/2)*Sqrt[c + d*x])/(2*c*x^2) - (3*(b*c -
 a*d)^2*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/(4*Sqrt[a]*c^(5/2))

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[n*((d*e - c*f)/((m + 1)*(b*e - a*f
))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rubi steps \begin{align*} \text {integral}& = -\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 c x^2}+\frac {(3 (b c-a d)) \int \frac {\sqrt {a+b x}}{x^2 \sqrt {c+d x}} \, dx}{4 c} \\ & = -\frac {3 (b c-a d) \sqrt {a+b x} \sqrt {c+d x}}{4 c^2 x}-\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 c x^2}+\frac {\left (3 (b c-a d)^2\right ) \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{8 c^2} \\ & = -\frac {3 (b c-a d) \sqrt {a+b x} \sqrt {c+d x}}{4 c^2 x}-\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 c x^2}+\frac {\left (3 (b c-a d)^2\right ) \text {Subst}\left (\int \frac {1}{-a+c x^2} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{4 c^2} \\ & = -\frac {3 (b c-a d) \sqrt {a+b x} \sqrt {c+d x}}{4 c^2 x}-\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 c x^2}-\frac {3 (b c-a d)^2 \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{4 \sqrt {a} c^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.82 \[ \int \frac {(a+b x)^{3/2}}{x^3 \sqrt {c+d x}} \, dx=\frac {\sqrt {a+b x} \sqrt {c+d x} (-2 a c-5 b c x+3 a d x)}{4 c^2 x^2}-\frac {3 (b c-a d)^2 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {c+d x}}{\sqrt {c} \sqrt {a+b x}}\right )}{4 \sqrt {a} c^{5/2}} \]

[In]

Integrate[(a + b*x)^(3/2)/(x^3*Sqrt[c + d*x]),x]

[Out]

(Sqrt[a + b*x]*Sqrt[c + d*x]*(-2*a*c - 5*b*c*x + 3*a*d*x))/(4*c^2*x^2) - (3*(b*c - a*d)^2*ArcTanh[(Sqrt[a]*Sqr
t[c + d*x])/(Sqrt[c]*Sqrt[a + b*x])])/(4*Sqrt[a]*c^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(254\) vs. \(2(93)=186\).

Time = 0.55 (sec) , antiderivative size = 255, normalized size of antiderivative = 2.14

method result size
default \(-\frac {\sqrt {b x +a}\, \sqrt {d x +c}\, \left (3 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{2} d^{2} x^{2}-6 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a b c d \,x^{2}+3 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) b^{2} c^{2} x^{2}-6 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a d x +10 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, b c x +4 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a c \sqrt {a c}\right )}{8 c^{2} \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, x^{2} \sqrt {a c}}\) \(255\)

[In]

int((b*x+a)^(3/2)/x^3/(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/8*(b*x+a)^(1/2)*(d*x+c)^(1/2)/c^2*(3*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^2*d^
2*x^2-6*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a*b*c*d*x^2+3*ln((a*d*x+b*c*x+2*(a*c)^
(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*b^2*c^2*x^2-6*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*a*d*x+10*(a*c)^(1/2)
*((b*x+a)*(d*x+c))^(1/2)*b*c*x+4*((b*x+a)*(d*x+c))^(1/2)*a*c*(a*c)^(1/2))/((b*x+a)*(d*x+c))^(1/2)/x^2/(a*c)^(1
/2)

Fricas [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 332, normalized size of antiderivative = 2.79 \[ \int \frac {(a+b x)^{3/2}}{x^3 \sqrt {c+d x}} \, dx=\left [\frac {3 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {a c} x^{2} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {a c} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) - 4 \, {\left (2 \, a^{2} c^{2} + {\left (5 \, a b c^{2} - 3 \, a^{2} c d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{16 \, a c^{3} x^{2}}, \frac {3 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {-a c} x^{2} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {-a c} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b c d x^{2} + a^{2} c^{2} + {\left (a b c^{2} + a^{2} c d\right )} x\right )}}\right ) - 2 \, {\left (2 \, a^{2} c^{2} + {\left (5 \, a b c^{2} - 3 \, a^{2} c d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{8 \, a c^{3} x^{2}}\right ] \]

[In]

integrate((b*x+a)^(3/2)/x^3/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(3*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(a*c)*x^2*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 -
4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) - 4*(2*a^2*c^2
 + (5*a*b*c^2 - 3*a^2*c*d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a*c^3*x^2), 1/8*(3*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)
*sqrt(-a*c)*x^2*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(-a*c)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + a^2*c
^2 + (a*b*c^2 + a^2*c*d)*x)) - 2*(2*a^2*c^2 + (5*a*b*c^2 - 3*a^2*c*d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a*c^3*x
^2)]

Sympy [F]

\[ \int \frac {(a+b x)^{3/2}}{x^3 \sqrt {c+d x}} \, dx=\int \frac {\left (a + b x\right )^{\frac {3}{2}}}{x^{3} \sqrt {c + d x}}\, dx \]

[In]

integrate((b*x+a)**(3/2)/x**3/(d*x+c)**(1/2),x)

[Out]

Integral((a + b*x)**(3/2)/(x**3*sqrt(c + d*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+b x)^{3/2}}{x^3 \sqrt {c+d x}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((b*x+a)^(3/2)/x^3/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1037 vs. \(2 (93) = 186\).

Time = 0.65 (sec) , antiderivative size = 1037, normalized size of antiderivative = 8.71 \[ \int \frac {(a+b x)^{3/2}}{x^3 \sqrt {c+d x}} \, dx=-\frac {b {\left (\frac {3 \, {\left (\sqrt {b d} b^{3} c^{2} - 2 \, \sqrt {b d} a b^{2} c d + \sqrt {b d} a^{2} b d^{2}\right )} \arctan \left (-\frac {b^{2} c + a b d - {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt {-a b c d} b}\right )}{\sqrt {-a b c d} b c^{2}} + \frac {2 \, {\left (5 \, \sqrt {b d} b^{9} c^{5} - 23 \, \sqrt {b d} a b^{8} c^{4} d + 42 \, \sqrt {b d} a^{2} b^{7} c^{3} d^{2} - 38 \, \sqrt {b d} a^{3} b^{6} c^{2} d^{3} + 17 \, \sqrt {b d} a^{4} b^{5} c d^{4} - 3 \, \sqrt {b d} a^{5} b^{4} d^{5} - 15 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} b^{7} c^{4} + 28 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a b^{6} c^{3} d - 2 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a^{2} b^{5} c^{2} d^{2} - 20 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a^{3} b^{4} c d^{3} + 9 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a^{4} b^{3} d^{4} + 15 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4} b^{5} c^{3} + \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4} a b^{4} c^{2} d + 9 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4} a^{2} b^{3} c d^{2} - 9 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4} a^{3} b^{2} d^{3} - 5 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{6} b^{3} c^{2} - 6 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{6} a b^{2} c d + 3 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{6} a^{2} b d^{2}\right )}}{{\left (b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2} - 2 \, {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} b^{2} c - 2 \, {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a b d + {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4}\right )}^{2} c^{2}}\right )}}{4 \, {\left | b \right |}} \]

[In]

integrate((b*x+a)^(3/2)/x^3/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

-1/4*b*(3*(sqrt(b*d)*b^3*c^2 - 2*sqrt(b*d)*a*b^2*c*d + sqrt(b*d)*a^2*b*d^2)*arctan(-1/2*(b^2*c + a*b*d - (sqrt
(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*b*c^2) + 2*(
5*sqrt(b*d)*b^9*c^5 - 23*sqrt(b*d)*a*b^8*c^4*d + 42*sqrt(b*d)*a^2*b^7*c^3*d^2 - 38*sqrt(b*d)*a^3*b^6*c^2*d^3 +
 17*sqrt(b*d)*a^4*b^5*c*d^4 - 3*sqrt(b*d)*a^5*b^4*d^5 - 15*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (
b*x + a)*b*d - a*b*d))^2*b^7*c^4 + 28*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d)
)^2*a*b^6*c^3*d - 2*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^2*b^5*c^2*d^
2 - 20*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^3*b^4*c*d^3 + 9*sqrt(b*d)
*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^4*b^3*d^4 + 15*sqrt(b*d)*(sqrt(b*d)*sqrt(
b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*b^5*c^3 + sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c +
(b*x + a)*b*d - a*b*d))^4*a*b^4*c^2*d + 9*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*
b*d))^4*a^2*b^3*c*d^2 - 9*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a^3*b^2*
d^3 - 5*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*b^3*c^2 - 6*sqrt(b*d)*(sqr
t(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*a*b^2*c*d + 3*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a)
 - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*a^2*b*d^2)/((b^4*c^2 - 2*a*b^3*c*d + a^2*b^2*d^2 - 2*(sqrt(b*d)*sqrt
(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*b^2*c - 2*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)
*b*d - a*b*d))^2*a*b*d + (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4)^2*c^2))/abs(b)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b x)^{3/2}}{x^3 \sqrt {c+d x}} \, dx=\int \frac {{\left (a+b\,x\right )}^{3/2}}{x^3\,\sqrt {c+d\,x}} \,d x \]

[In]

int((a + b*x)^(3/2)/(x^3*(c + d*x)^(1/2)),x)

[Out]

int((a + b*x)^(3/2)/(x^3*(c + d*x)^(1/2)), x)